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Skin friction and surface temperature of an insulated 
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The time-mean skin friction of the laminar boundary layer on a flat plate which 
is fixed a t  zero incidence in a fluctuating stream is investigated analytically. 
Flow oscillation amplitude outside the boundary layer is assumed constant 
along the surface. Erst ,  the small velocity-amplitude case is treated, and 
approximate formulae are obtained in the extreme cases when the frequency is 
low and high. Next, the finite velocity-amplitude case is treated under the 
condition of high frequency, and it is found that the formula obtained for the 
small-amplitude and high-frequency case is also valid. These results show that 
the increase of the mean skin friction reduces with frequency and is ultimately 
inversely proportional to the square of frequency. 

The corresponding energy equation is also studied simultaneously under the 
condition of zero heat transfer between the fluid and the surface. It is confirmed 
that the time-mean surface temperature increases with frequency and tends to be 
proportional to the square root of frequency. Moreover, it is shown that the time- 
mean recovery factor can be several times as large as that without flow oscillation. 

1. Introduction 
Boundary-layer flow problems in oscillatory motions with steady oncoming 

stream arise in connexion with many interesting and important fluid-mechanical 
effects. Studies on the fluctuating component of the periodic boundary layer 
have been made by many authors, for example, Moore (1951), Lighthill (1954) 
Stuart (1955), Lin (1957), Illingworth (1958). However, few works have been 
published on the time-mean problems of the periodic boundary layer. Solutions 
which are restricted to  low-frequency oscillation have been obtained for flat- 
plate flow by Moore & Ostrach (1956) and Kestin, Maeder & Wang (1961). The 
time-mean characters, including high-frequency oscillation, of the periodic 
boundary layer near a two-dimensional stagnation point have been studied by 
Ishigaki (1970). 

Among the above-mentioned works, Lin has qualitatively suggested that, in 
the effect of high-frequency oscillation on time-mean flow, oscillation amplitude 
variation along a body surface, dU,/dx, plays an important role and even a large- 
amplitude oscillation will produce small changes in time-mean flow field if 
dU,/dx = 0; here U, is an external flow oscillation amplitude and z is a distance 
along a body surface. Ishigaki has shown that time-mean skin friction near a 
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two-dimensional stagnation point is inversely proportional to a half power of 
frequency for high-frequency oscillation. 

Even though time-mean deviation from a steady state may be small when 
dUJdx = 0, it will be non-zero because it, of course, arises from non-linear 
terms of the boundary-layer equation. The main purpose of the present paper is 
to investigate the effect offlow oscillation, especially of high frequency, on time- 
mean skin friction of a flat plate under the condition dUildx = 0. The results 
will be contrasted with the former stagnation-point flow results. 

With viscous dissipaOion of kinetic energy taken into account, the correspond- 
ing energy equation is also treated simultaneously under the conditicm of 
insulated surface. Concerning the oscillating thermometer problem, a few works 
have been published. Stuart (1955) has treated exactly the effect of flow oscilla- 
tion on the temperature field on an idk i t e  insulated plate with uniform su( t' ion. 
Maslen & Ostrach (1957) have studied the temperature field on an insulated 
plate oscillating in a fluid at rest. These two results show that the time-mean 
surface temperature rises with frequency. It may be of some value to confirm 
these results for a more complicated case when an infinite insulated plate without 
suction is fixed in the fluctuating oncoming stream. 

2. Small velocity-amplitude case 
Let us consider the two-dimensional boundary layer on an insulated flat plate 

fixed at  zero incidence in an unsteady stream of an incompressible fluid. Let x 
denote distance along the surface from the leading edge, y the normal distance 
from the surface, and u, v the corresponding velocity components, T the temper- 
ature, t time, u kinematic viscosity, K thermal diffusivity, c specific heat, and 
U(x ,  t )  the external flow velocity. 

The boundary-layer equations for velocity and temperature, including viscous 

dissipation, are au av 
G+ay = 07 (1) 

au au au au au a Z u  
-+u-+v- = - +u-+u- 
at ax ay  at ax a Y 2 j  

aT aT BT 
(3) 

ZL = v = aT/ay = 0 at y = 0; u = U(x, t ) ,  T = T, as y-tccl. 

We shall confine our attention to the external velocity U(x ,  t )  of the form 

U = U,(1 +ceiot) ,  (4) 
where U,, c are constant and w is frequency. 

From the continuity equation (1) we can define a function 9 by 

u = a@iay, = -a$iax. ( 5 )  
When E is smaller than unity, we may develop the functions @ and T in the forms 

@b7 Y, t )  = 

T ( x ,  y, t )  = To(x, y) + sTl(x, y) eiWt+ c2{Z(x, y) + T&, y) e2iwt) + O(c3),  
Y) + c@l(x, Y) eiWt + c2{@&x, Y) + @2(x, y) eziwt) + 0(c3), 
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where only the real part is to be taken. Substituting the expressions (4), ( 5 ) ,  
(6) into (2), (3) and equating the same order of E ,  sets of equations are obtained. 

Equations for $o and To are the steady-state equations and the solutions are 
the following well-known functions : 

$0 = PvU,z)+f(y), = T m + ( e / z c ) ~ ( 7 ) ;  7 = (U,/ZVX)*Y. ( 7 )  

Equations for $1 and Tl are 

$1 = ak1/ay = aTl/ay = o at  y = 0; a$liay = u,, T~ = o as y + CO. 

Approximate solutions have been obtained in the extreme cases when the 
frequency parameter (T = wx/U, is small and large. For small (T Moore’s results 
can be particularized as 

For large (T the method due to Illingworth, who has treated the heat-transfer 
problem under the condition of negligible viscous dissipation, may be appropriate . 

a = (Z icr ) -g  and $ = ( iw/v) t  y, If 

it may be written as 

Provided that a is small and P is not too large, the following approximations are 
made when 7 = a$ is considered: 

(11) 

where the primes denote differentiation with respect to y. Solutions which 
satisfy the boundary conditions at  $ = 0 are 

f(@) = z~ 1 2  $ 2 ”  f (0) + O(a5),  r(aP) = r(O) + +a2$2,r”(o) + O(a5), 

( l o b )  I go = p- 1 +e+,  g ,  = g, = 0, 
9, = &{4p2 - 13 + (13 + 13$ + 5p2 + 3p3) e - P } f ” ( O ) ,  

p o  = 0, p - __ {e-g*p- P’?te-p}f”(o), 
494 

l - 1 - 8  p2 = p ,  = 0, 

in which 9 = V / K  is the Prandtl number. For the amplitude and phase angle of 
fluctuating skin friction of order E ,  the reader may refer to the results of Illing- 
worth. For fluctuating surface temperature expressions are obtained from (9), 
(10) as 

(T1)u=o = 2.0- 2.852&~+ 3*Z66(icr)2+0(~3)  (small cr), ( 1 2 a )  
(To),=, - T m  

= 0*7193(ia)-4 + 0 ( r 2 )  (large (T). (12b) 

The amplitude and phase angle of fluctuating surface temperature of order 8 
are shown in figure 1. 
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Equations for time-independent functions $s and T, are 

where subscripts r and i respectively denote real and imaginary part of function. 
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FIGURE 1. Amplitude and phase angle of fluctuating surface temperatmure. 

When r is small, appropriate forms may be written as 

(14) 

Substituting (9), (14) into (13) and equating the same order of r, we have from 
P3a) 
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and from (1 3 b )  

9-p; f fP; 
Y-lP;l+ fP; - 2f’P1 = - 3r’G1- 4f”c‘;, 

.9’-lP; + fPL - 4f ‘P2 = - W G ,  + gg2 ph + g; pl - #gl p i  - 2gA p 2  + &sop; 
( 1 6 b )  

= - r’GO - +gopi - 4f”G,“ - (gi)2, 

- 4f”G‘; + 2g;g; - (g’;)2, 

Po=Pl=P,= ...= 0 as q+w. I 
PA =P; = Pk = ... = 0 at q = 0; 

Here Go and Po are the quasi-steady state solutions, and we have 

Po = 8. + &zF;rr‘ +&q2r“. Go = &( -f+ qf’ + qy), 
Functions G, and Pl are identically zero and G,, P, are obtained numerically for 

When a is large, substitution of ( l o a )  and ( lob)  into the right-hand side of 
9 = 0.72. 

( 13 a) yields 

- (13+ 262+ 1 6 ~ ~ + ~ z ~ ) e - ~ ~ } f ” ( O ) + O ( a - ~ ) ,  (16) 

in which z = (w/2v)* y. The particular solution, ?,hsp, may be written as 

$sp = (Urn/&) (~/2~)B(G,(~,2)~0~~e-~+G,(x,2)sinze-~+G,(x,z)e-~}. (17a) 

The equation for Ge, for example, is 

f”(0) = - 3 4 1 3  3 2  + 262 + 16z2+ $z3)f”(0) + O(g-8). 

Therefore expanding GeCX, 2) = C a-*”Ge,(z), 
12= 0 

we obtain 

Similarly we have 

Geo = - -1- (180+147~+42~~+42~)f”(O) ,  8 2 1  Gel = Ge2 = 0. 

G,(x,x) = &(392+ 30z2+4x3)f”(0) + O ( d ) ,  

G,(x,x) = &( - 3 9 2 + 4 ~ ~ ) f ” ( O ) + O ( d ) .  

It is readily understood that boundary conditions a t  the wall are to be adjusted 
by solving the homogeneous equation under the appropriate boundary conditions 
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which are estimated from the particular solutions. This homogeneous solution $sh 

Therefore the contribution to the time-mean skin friction is of the order of a-* 
and will be neglected in the after skin friction estimation. 

As to the time-mean energy equation (13 b) ,  substitution of (10) and (17) yields 

The particular solution Tsp may be expressed as 

T, = ( U 3 2 c )  P,(x, z )  e--22 

and we have 

Then the homogeneous solution qh may be expressed as 

p, = - g 9 +  O(a-4). 

Tsh = ( U 2 , / 2 ~ )  2 dnPn( r ) ,  
n= 0 

and satisfy the following equations and boundary conditions: 

?P-'P;+fP;+(i-l)f'~ = 0 (i = 0, 1,2),  

PAz-9, Pl=P,=O at r = O ;  Po=Pl=P,=O as r-+03. 

Functions Pl, P2 are identically zero and Po is found numerically for 9 = 0.72. 

and surface temperature. If we write the time-mean skin friction, 
Now we can obtain the approximate expressions of time-mean skin friction 

- 1 
7-w = nJo2nP (au/aY),=,dt, 

aa  T,/.~, = i + ~ .4 (a )  + 0 ( € 4 ) ,  (20) 

A(a) = &-0.621a2+0(a4) (small a), (20a) 

= 0.1875~r-~+O(a-8) (large a). (20b) 

in which T~~ is the skin friction without oscillation and ,u is viscosity, then 

The function A(a) is shown in figure 2. We can see that A(a)  decreases with a 
abruptly and tends to zero for a medium value of a. As compared with this, the 
corresponding function for stagnation-point ff ow decreases with frequency very 
gradually. 

For the time-mean surface temperature 

we write = 1+.52B(a)+O( a 4 ) .  
T W  - Taz 

(To),=, - T m  

It follows B(a) = 8 + 2*448a2 + O(g4) (small a), ( 2 1 4  

= 1.45680-4 - 0.425 + O(a-l) (large a). (21 b )  
The function B(a) is shown in figure 3. The asymptotic value for very large a, 
first term only in (21b), is also shown by broken line. 
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FIGURE 2. Plot of A with frequency parameter v. 
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FIGURE 3. Plot of B with frequency parameter c, 
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3. Finite velocity-amplitude case 
The basic equations in the boundary layer are identical with those of preceding 

section, that is, (l), ( 2 )  and (3). The external flow velocity outside the boundary 
layer is given by (4) without restriction on 6. 

Following Lin's method, functions $, defined in (5 ) ,  and T may be expressed 
as the sum of a time-mean and a time-dependent component as 

(22) 
?Ax, y, t )  = i+, Y) + $t (x, y, t )  (3 - 0 

T(x, y, t )  = w, Y) + T,(x,  Y, t )  = - 01, )'I 
where a bar over the symbols denotes time-mean quantities. Substituting (22 )  
into (l), ( 2 ) ,  (3), (5 )  and taking its time average, time-mean equations are 
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obtained. Subtracting each time-mean equation from the corresponding full 
equation, time-dependent equations are obtained. 

The equation for time-dependent velocity is 

- 
$ = appy = o at y = 0; a$py = Urn as y-tco. 

In  the case of high frequency, it may be expected that the left-hand side of (23) 
is of major importance and the method of successive approximations is appro- 

125) 
priate. We let 

Under the conditions 
$t = @to+@t17 T = TO+Tl. 

the first approximation to the time-dependent component is obtained from (23) 
after letting g equal zero. The solution has been obtained by Lin as 

@to = eU,(v/iw)+ {(iw/v)+y- 1 + exp ( - y(iw/v)g)} eiwt, (27) 

which is independent of x. Substitution of this solution therefore reduces (24) 
to  the equation of the flow without oscillation and the first approximation to the 
time-mean component Po is equal to  $o in (7). Therefore it follows that, even if 
velocity amplitude becomes large, the effect of high-frequency oscillation on time- 
mean flow field on a flat plate may be negligible to the first approximation. 

Substituting (27) into gin (23), we have the second-approximation equation as 

- 
$l = ap,/ay = o at  y = 0; ap1/ay = 0 as y + m .  

When approximation (11) for $o is also made, a method similar to the small- 
amplitude case is also applicable. The calculations are somewhat lengthy but 
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straightforward and the details are abridged here. The results so obtained are the 
same as those of the small-amplitude case and higher harmonics do not yet appear 
at this stage. 

For time-dependent temperature we have 

aT,/ay=O at y = O ;  % =  o as y + m ,  
where 

Similarly in (23 ) ,  g in ( 3 0 )  is neglected for the f i s t  approximation under the 

Moreover, an assumption is made that 

that is, E is not too small. The simplified equation for Go, first approximation to 
the time-dependent temperature, is 

To=------ “L’ (2 rg) (( :)‘exp ( - ( y ) ’ y )  - exp ( - 2 (:)‘y)) eZiwt. (32 b )  

It can be seen that the second-harmonic fluctuation, which is independent of x, 
becomes predominant and surface-temperature amplitude is independent of w. 

The time-mean energy equation is 

aT/ay = 0 a t  y = 0;  F = T, as y + m .  

The first approximation of time-mean temperature, To, is obtained from the 

(34 )  
a$., aTo a$oaTo 
ay ax ax ay 

equation 

the equation and boundary conditions for TOa can be chosen so as to  agree with 
those without oscillation and the solution is equal to To in ( 7 ) .  Using (27 ) ,  the 
equation for Fob is therefore given as 

aToblay = o at  y = 0; T,,b = o as y + m .  
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Approximations (1 1) are also made and a method similar to (1 8) leads us to the 
same results as the small-amplitude case. Therefore the assumption in (31a) 
becomes clear as 

t f + e C F / ~ ,  or ~ 9 ~ 2 .  

At the end of this section, it may be helpful to make some discussions about the 
temperature-field results obtained in these two sections. For large value of tf, 
Stuart’s exact solution for a flat plate with uniform suction can be reduced to 

in which h = wvlv; and vw is constant suction velocity. The present result for 
a flat plate without suction, deduced from these two sections, is 

Comparing these results, the time-mean surface temperatures are of the same 
character, except that the latter coefficient depends on the Prandtl number, and 
the only difference in the fluctuating surface temperature is that the latter 
first-harmonic fluctuation is multiplied byf”(0). Therefore the characters of the 
temperature field described by Stuart are also valid in this case. 

In  connexion with the mean surface temperature, we attempt here t o  obtain 
the tiemperature recovery factor for this case of fluctuating flow. If we consider 
the time-mean stagnation temperature of the external stream, Tw,, as 

the dimensionless mean surface temperature y is approximately given for high 
frequency and B = 0.72 as 

Fw - 0.848(1+ c2( 1.457 tf4 - 0.425)) 
y = mw = 

1 + B E 2  

This dimensionless temperature is shown in figure 4, and we can see that it can 
be several times as large as that without flow oscillation ( B  = 0). 

4. Concluding remarks 
In  order to give the quantitative verification of Lin’s theory, approximate 

velocity solutions are obtained in the case when the flow oscillation amplitude 
does not change along the surface. The solutions of $0 2 and 3 show that the time- 
mean skin friction becomes greater than the steady value and is proportional to 
the square of the velocity-amplitude ratio e.  The contribution of flow oscillation 
to the mean skin friction decreases with frequency abruptly and is ultimately 
inversely proportional to the square of the frequency. This result may be con- 
trasted with the former result of stagnation-point flow in which the flow oscilla- 
tion amplitude changes along the surface. The time-dependent solutions show 
that the trends are in accord with Lighthill’s theory. 

The corresponding energy equation is also treated simultaneously under the 
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condition of zero heat transfer between the fluid and the wall. At the end of 
5 3 comparison with Stuart’s result is made, and we can see that two results are 
in same character at  high frequency. Moreover, the dimensionless surface 
temperature is shown in figure 4, and it can be seen that the time-mean surface 
temperature can be much greater than the stagnation temperature of the ex- 
ternal stream. We know the resonance tube as a device to produce high temper- 
ature. The resonance tube is a cylindrical resonator, closed at  the downstream 
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FIGURE 4. Dimensionless mean surface temperature &s a function 
of frequency parameter u for several values of B .  

end, which is excited to oscillation by an air jet. The reason why the tube wall 
temperature rises higher than the stagnation temperature of the air jet has been 
hypothesized to be due to shock waves inside the resonance tube. As yet, however, 
no adequate theory of resonance tube heating has been published and this 
hypothesis has been questioned by Sibulkin (1963). The effect of viscous dissipa- 
tion combinedwith oscillation on the resonance tube heating has not been clarified 
and may be the subject for zt future study. 

R E F E R E N C E S  

ILLINGWORTH, C. R. 1958 J .  Fluid Mech. 3, 471. 
ISHIGAKI, H .  1970 J .  Fluid Mech. 43, 477. 
KESTIN, J., MAEDER, P. F. & WANQ, W. E. 1961 Appl. Sci. Res. A 10, 1. 
LIQHTHILL, M. J. 1954 Proc. Roy. SOC. A 224, 1. 
LIN, C. C. 1957 Proc. 9th Int. Gongr. Appl. Mech. 4, 155. 
MASLEN, S. H. & OSTRACH, S. 1957 Quart. Appl. Math. 15, 98. 
MOORE, F. K. 1951 NACA TN 2471. 
MOORE, F. K. & OSTRACH, S. 1956 NACA T N  3886. 
SIBULEIN, M. 1963 2. angew Math. Phys. 14, 695. 
STUART, J. T. 1955 Proc. Roy. SOC. A 231, 116. 


